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Recall that an error correcting code is a procedure for introducing redundancy to a message we
want to send to someone so that even if parts of the encoded message are corrupted, the message
can be uniquely recovered. In the last lecture you saw various ways to design error correcting codes,
but let’s see how those would play out if you were to use them in practice.

Suppose you designed some code and you use it to send a message to your friend. During trans-
mission, the message gets corrupted in some unknown manner. How should your friend go about
fixing the errors?

Let’s do an example. Recall the Reed-Solomon code from this morning’s lecture. Say Alice has a
five symbol message written in English, for example speak, that she wants to send to Bob. Alice
will encode this message like this. Think of each of the letters in the message as coming from an
alphabet of size 29 (English has 26 letters, but we can also include symbols like the white space, a
comma, a dot), so we can identify each letter with a number in the set {0, . . . , 28}. If we identify
the letters by their position in the alphabet, for instance, the message speak would be represented
as (18, 15, 4, 0, 10). To encode this message in order to protect from errors, we need to introduce
some redundancies – say we take our 5-symbol message and convert it into an 9-symbol codeword.
In the Reed-Solomon code, this codeword will consist of the 9 symbols:

18 + 15 · 0 + 4 · 02 + 0 · 03 + 10 · 04 = 18 (mod 29)

18 + 15 · 1 + 4 · 12 + 0 · 13 + 10 · 14 = 18 (mod 29)

18 + 15 · 2 + 4 · 22 + 0 · 23 + 10 · 24 = 21 (mod 29)

...

18 + 15 · 8 + 4 · 82 + 0 · 83 + 10 · 84 = 0 (mod 29).

So Alice will encode the message (18, 15, 4, 0, 10) by the 9 symbol codeword (18, 18, 21, 10, 5, 5, 17, 27, 0).
This is what Alice will send through the channel, and what Bob expects to see if there are no errors.
How does he go about recovering the message?

If there are no errors, he can do the following thing. Bob introduces variables (x1, x2, x3, x4, x5)
that denote the five symbols in the message. To recover the message, he has to solve this system
of equations:

x1 + x2 · 0 + x3 · 02 + x4 · 03 + x5 · 04 = 18 (mod 29)

x1 + x2 · 1 + x3 · 12 + x4 · 13 + x5 · 14 = 18 (mod 29)

x1 + x2 · 2 + x3 · 22 + x4 · 23 + x5 · 24 = 21 (mod 29)

...

x1 + x2 · 8 + x3 · 82 + x4 · 83 + x5 · 84 = 0 (mod 29).

As it turns out, this system always has a solution, even if you had only 5 equations, which allows
Bob to recover the message.

But what happens if there are errors? It depends on what the errors are like. If Bob knows, for
example, that the third and the fifth symbol in the codeword have been corrupted, so he receives
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something like
received word = (18, 18, ?, 10, ?, 5, 17, 27, 0)

he can still recover the message: He simply discards the third and fifth equation and still has 7
equations left, well enough to solve for the unknown 5 symbol message. But what happens if some
symbols are corrupted, but Bob doesn’t know which ones? For instance, he receives the following
corrupted codeword:

received word = (18, 19, 21, 10, 5, 5, 17, 27, 0)

Here is what he can do in this case. He tries to solve the system of equations, but it turns out that
there is no solution. He then knows that some of the symbols have been corrupted. It is reasonable
for him to start with the conservative assumption that there has been one corruption. How does he
know which one? One possibility is to try them all: For every sequence of 9 symbols (a1, a2, . . . , a9)
that differs from the received word in exactly one place, check if the system of equations with
(a1, . . . , a9) on the right hand side has a solution. If it does, Bob has reason to believe that the
solution indeed equals the encoded message.

But what happens if there are several possible solutions? We will now argue that this cannot
happen.

1 Minimum distance and decoding radius

Suppose you have an encoding Enc that takes a message of length k and turns it into a codeword
of length n. For this code to be able to correct errors, the least we could ask is that Enc is injective
– namely, distinct messages always map to distinct codewords. However, this is not good enough:
If M and M ′ are distinct messages but the codewords Enc(M) and Enc(M ′) differ in only one
position, then it is easy to confuse the two because if one of them becomes corrupted at this position
it can easily turn into the other.

In general, it sounds reasonable that to tolerate more corruptions, we want to make distinct code-
words as far apart from one another as possible.

Definition 1. We say an encoding Enc has minimum distance d if for every pair of messages
M 6= M ′, the codewords Enc(M) and Enc(M ′) differ in at most d positions.

There is a price we have to pay for minimum distance: The larger we want to make the distance,
the longer the codewords we have to use. However, we can then also tolerate more and more errors:

Claim 2. Suppose an encoding Enc has minimum distance d. Then there exists a decoding Dec
such that for every message M and for every corrupted word corr that differs from Enc(M) in
fewer than d/2 po, Dec(corr) = M .

Proof. The decoding Dec does the following: When given a corrupted word corr, it finds the
codeword c = Enc(M) that differs from it in the fewest positions (breaking ties arbitrarily) and
outputs the message M .

Now suppose for contradiction that there is some message M and a word corr that differs from
Enc(M) in fewer than d/2 positions such that Dec(corr) = M ′ 6= M . Then corr and Enc(M ′) must
differ in fewer than d/2 places, so Enc(M) and Enc(M ′) differ in fewer than d places, contradicting
the assumption that the minimum distance of Enc is d.
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It turns out that the Reed-Solomon code with message length n and codeword length m has
minimum distance n− k + 1. When k = 5 and n = 9, the minimum distance is 5, which allows for
correction of up to two errors.

So now at least we know that in principle, we can recover from up to d/2 errors in the corrupted
codeword. But we have to pay a high price for this. To recover from one corruption, we have to
try to solve a system of equations for all possible words at distance one from the received word.
There are about 29n such systems of equations. More generally, to handle c corruptions, we have
to repeat the procedure roughly (29)c

(
n
c

)
times, which becomes intractable even for small values of

c, like c = 3. Is there a better way?

It turns out that there is, but it involves rather complicated calculations with polynomials and
linear equations. Instead I will show you a much simpler scheme that allows us to recover errors in
time linear in the number of corruptions c.

2 Parity check codes

To describe the codes in question, it will be helpful to shift perspective. When we want to design
a code, it is more natural to first think of a scheme to encode the data, and then worry about the
decoding later. But since we are now interested in having very quick decoding procedures, let’s
start by designing the decoding first and later worry about how to encode the data.

For inspiration, let’s start with a very simple code over alphabet {0, 1}. We will encode a length k
message via the following scheme:

(x1, x2, . . . , xk)→ (x1, x2, . . . , xk, x1 + x2 + · · ·+ xk)

where + is addition modulo 2, or the XOR operation.

This is not a very good error correcting code, as its minimum distance is 2. However, the code can
still be used to detect single errors. To check if an error occurred, simply take all the symbols in
the corrupted word and add them up modulo 2. If the sum is zero, we know that a single error
could not have occurred.

To summarize, there is a very easy way to check if a word c is an actual codeword in this code: c
is a codeword if and only if c1 + c2 + · · ·+ cm = 0. In general, instead of describing the code by the
encoding procedure, we can simply give a list of constraints that the bits of the codewords must
satisfy.

How can we design codes that are resilient against more errors? Here is one such code. This code
takes messages of length 3, encodes them into codewords of length 7, and can detect up to two
errors:

(x1, x2, x3)→ (x1, x2, x3, x1 + x2, x1 + x3, x2 + x3, x1 + x2 + x3)

You can verify that the minimum distance of this code is 4. Its codewords are those strings
(y1, y2, y3, y4, y5, y6, y7) that satisfy the constraints

y1 + y2 + y4 = 0

y1 + y3 + y5 = 0

y2 + y3 + y6 = 0

y1 + y2 + y3 + y7 = 0.

(1)
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Notice something interesting: If the message length is k and the codeword length is n, then the
number of constraints that describe the codewords is n − k. This is true as long as the code is
linear – namely every bit of the codeword is a modulo 2 sum of a subset of its inputs – and all
the bits of the codeword are linearly independent, and all parity check constraints are also linearly
independent.

How do we go about getting codes that tolerate even more errors? You can imagine how the scheme
we just described can be extended to longer messages, and it will tolerate a very large number of
errors, more than half of the length of the codeword.1 However, using this scheme is problematic
for large values of k: It requires codewords of length m = 2k − 1, which is really big even for say
k = 32. What else can we do?

3 Random parity check codes

The trick is to pick a code where the parity check constraints are not chosen methodically, but
at random. To explain how, it will help to think to represent the parity check constraints by a
bipartite graph called the constraint graph. The bottom vertices of this graph represent the bits of
the codeword. The top vertices represent the constraints, and edges indicate whether a codeword
bit participates in the constraint. For example, we represent the constraints (1) by the this graph:

+ + + +

y1 y2 y3 y4 y5 y6 y7

Now instead of settling for any specific constraint graph, we just want to choose one at random –
but with the following requirements:

• Every constraint involves the same number d of codeword bits.

• Every bit of the codeword participates in the same number b of constraints.

Recall that if we want to encode k bits of information into an m bit codeword, the number of
constraints is n = m − k, which is always smaller than m. To satisfy the above requirements, we
must have bm = dn. How can we get a random constraint graph like this?

Here is one way to do it. We start with bm vertices at the bottom, dn vertices at the top, and
choose a random matching from top to bottom. Then you divide the bottom vertices into n blocks
with d vertices each, and the top vertices into m blocks with b vertices each. Finally, you contract
all the vertices in the same block (that is, you turn them into one big vertex).

Here is an example with n = 6, d = 4, m = 8, b = 3:

1This code is called the Hadamard code.
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After contracting the vertices in each block, we obtain this graph:

This graph is regular. Notice how there are multiple edges between certain pairs of vertices. We
will allow this.

Here is a much larger instance of a random graph (with n = 90, d = 4,m = 120, b = 3):

4 The distance of random parity check codes

Now that we have a candidate code – namely, a code with a random parity check matrix – we
can go about designing a decoding algorithm for it. But before we do this, it will be helpful to
understand the minimum distance of these codes.

Since the code in question is random, the minimum distance will be a random variable. For some
parity check codes it could be low, for other ones it could be high. However, will argue that when
the code is chosen at random, the minimum distance is unlikely to be too small.

How do we calculate the minimum distance of this random code? First let me show you a little
trick. To argue that a random linear code has distance at least c, it is suffices to know that every
non-zero codeword has Hamming weight at least c: That is, at least c positions of the codeword
are 1. Here is why. Suppose the code has distance less than c. Then there exists two codewords,
let’s call them cw1 and cw2, so that the distance between them is less than c. Now we claim that
if cw1 and cw2 are codewords, so is cw1 + cw2. This is easy to check: If all parity checks for cw1

evaluate to zero, and all parity check for cw2 evaluate to zero, then certainly they will all evaluate
to zero for cw1 + cw2.

As a warm-up, let’s begin by showing that the minimum distance is likely to be at least 2. By what
we said, it is sufficient to argue that usually, every word of Hamming weight 1 is not a codeword.
Let us show instead that the probability that some word of Hamming weight 1 is a codeword is
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very small. How do we calculate this probability? There are n words of Hamming weight 1. Let us
fix such a word w and suppose it is 1 in the ith position. Recall that the ith position participates
in b parity checks. The only way for all of these b parity checks to evaluate to zero is if each of
them covers the ith position an even number of times – in particular, more than once. This can
happen only if there is a set of at most b/2 parity check vertices such that each one of them has at
least two edges going to vertex i of the codeword.

We can turn this reasoning into a formula that upper bounds the probability that the distance is
at most 1. Let’s introduce some notation. Let W1 be the set of all words of Hamming weight 1, wi

be the word that has 1 in position i and zero everywhere else, and let P (w) = 0 denote the event
that the parity checks all evaluate to 0 for a word w. Finally, let S denote a subset of the parity
check vertices and e(S, {i}) denote the number of edges between the vertices in S (at the top) and
vertex i (at the bottom).

Pr[distance ≤ 1] = Pr[∃w ∈W : P (w)]

≤
m∑
i=1

Pr[P (wi) = 0]

≤
m∑
i=1

Pr[∃S : |S| ≤ b/2 and e(S, {i}) ≥ b]

≤
m∑
i=1

b/2∑
s=1

∑
S : |S|=s

Pr[e(S, {i}) = b].

In all the lines of this calculation we have only used the union bound, which says that the probability
of a union of events is at most the sum of the probabilities of the individual events in the union.

How do we calculate the probability that e(S, {i}) = b? To do this, we have to go back to our
representation of the graph by matchings. Recall that vertex i was obtained by contracting b
vertices at the bottom, while the vertices in S were obtained by contracting ds vertices at the top.
The top and bottom vertices were connected by a random matching. We now ask what are the
chances that in this matching, all b vertices at the bottom hit the set of ds vertices at the top. A
simple calculation shows that this is

Pr[e(S, {i}) = b] =
ds

dn
· ds− 1

dn− 1
. . .

ds− b+ 1

dn− b+ 1
≤
( s
n

)b
≤
( b

2n

)b
.

Plugging this in, we obtain that2

Pr[distance ≤ 1] ≤
m∑
i=1

b/2∑
s=1

∑
S : |S|=s

( b

2n

)b
≤ m

( b

2n

)b b/2∑
s=1

(
n

s

)
≤ m(n+ b/2)b/2

(b/2)!

( b

2n

)b
.

This probability is very small: For example, when m = 120, n = 90, d = 8, and b = 6, it is about
2%. Asymptotically, if d and b are constant and we let n become larger and larger, the probability
that the distance is at most one is O(1/nb/2−1).

So now we know that with pretty high probability, a random parity check code has minimum
distance at least two. Is it larger than two? In fact a similar argument leads to the conclusion that
with high probability, the minimum distance is quite large. We state this as a lemma, which you
will prove as part of your homework.

2Here we assume b is even. If b is odd, the code has distance 2 or more with probability one, can you see why?
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Lemma 3. The probability that there exists a word w of Hamming weight h such that P (w) = 0 is
at most (

m

h

)
· (n+ bh/2)bh/2

(bh/2)!
·
( bh

2n

)bh
.

When b, h, d are arbitrary constants and we let n go to infinity, this probability is at mostK/nbh/2−h,
where K is some large constant. So by a union bound, the probability that there exists some
h, 1 ≤ h ≤ c such that P (w) = 0 for some w of Hamming weight h is at most

c∑
h=1

K

nbh/2−h
≤ Knb/2−1

1− nb/2−1
= O(nb/2−1).

We have just proved the following theorem:

Theorem 4. Fix b, c, d and let n go to infinity. The probability that a random parity check code
has minimum distance at most c is at most O(1/nb/2−1).

In fact, with high probability the minimum distance is as large as αn for some constant α > 0 that
depends on b and d but not on n. But this is a bit more difficult to prove.

5 Decoding random parity check codes

We now go back to the question of how to decode random parity check codes.

Let us begin by investigating what happens when no error occurs in the transmission. If we receive
a codeword cw, how are we supposed to decode it? This is a trick question as we never described
how the encoding works in the first place.

Here is the trick. Given a constraint graph P of parity checks, we can reverse engineer the encoding
procedure using a bit of linear algebra. Let’s begin by working out an example – the parity check
code given by the equations (1). In this case, we know how the encoding is supposed to work, but
let’s pretend that we don’t and try to derive the encoding from the equations.

First, since there arem = 7 parity check bits y1, . . . , y7 and n = 4 (linearly independent) constraints,
we know that the message length is k = m − n = 3. Let’s represent the message as (x1, x2, x3).
It turns out that without loss of generality (by some linear algebra), we may assume that the first
3 bits of the codeword equal the first 3 bits of the message, while the other 4 are some linear
combinations of them. So we can write y1 = x1, y2 = x2, y3 = x3 and

y4 = a41x1 + a42x2 + a43x3

y5 = a51x1 + a52x2 + a53x3

y6 = a61x1 + a62x2 + a63x3

y7 = a71x1 + a72x2 + a73x3

where a41 up to a73 are (for now) unknown coefficients (1 or 0). Let’s see what kind of information
we can get about these coefficients. From the equation y1 + y2 + y4 = 0, we can conclude that

x1 + x2 + a41x1 + a42x2 + a43x3 = 0
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Since this equation must hold for all messages (x1, x2, x3), we must have a41 = 1 (when x1 = 0 and
x2 = x3 = 0), a42 = 1 (when x2 = 1 and x1 = x3 = 0) and a43 = 1 (when x3 = 1 and x1 = x2 = 0).
By solving the equations related to the other constraints in a similar way, we find out that

y4 = x1 + x2

y5 = x1 + x3

y6 = x2 + x3

y7 = x1 + x2 + x3.

So we managed to reverse engineer the encoding algorithm from the parity check constraints. In
fact this is always possible: For every parity constraint graph, we can set up a similar system of
equations. The first k constraints y1, . . . , yk are equal to the first k bits x1, . . . , xk of the message,
and to figure out the other ones, we set up the coefficients in the constraints as indeterminates and
solve for them using the constraint equations.

One great thing about this scheme is that, at least in the case of no errors, the decoding is now
extremely simple! To find the message corresponding to a codeword cw, we simply read off the first
k bits of cw.

What happens when there are errors? It turns out that the decoding does not get much more
complicated. To explain how it works, let’s do an example. Here is a random parity check code,
and suppose we have received a corrupted word, where the corruptions are marked in red (of course
the decoder does not know where they are):

To check if the codeword is valid, the decoder evaluates the parity checks, but alas, some of them
evaluate to 1! So the decoder knows there is a corruption, and decides to take a closer look at the
bits of the received word that participate in these faulty constraints. In this drawing, the faulty
constraints and their outgoing edges are marked in red:

This gives rise to many suspicious positions in the received word. But how do we know which
ones are the corrupted ones? A good rule of thumb would be that the more faulty constraints a
bottom vertex participates in, the more likely it is to be corrupt. In particular, if more than half
the constraints that a bottom vertex participates in are dirty, then the vertex is suspicious. The

8



suspicious vertices are marked with a star. Notice that these include the corrupted bits of the
codeword, but sometimes also some other ones! Nevertheless, let’s change all the suspicious bits of
the codeword (each 0 becomes a 1, and each 1 becomes a 0) and see what happens:

What happens is that there we got rid of some of the corruptions in the original word, but we may
have introduced some new ones. However, notice that the we now have fewer violated constraints
than before, and we can repeat the process until we get rid of all of them:

Let us now write a formal description of this decoding procedure:

Decoder for random parity check code P :
While P (w) 6= 0 (i.e., some parity checks are incorrect):

Let F be the set of codeword positions such that
more than b/2 of the parity checks evaluate to 1.
Flip the bits of w in the positions indexed by F .

Output the first k bits of w.

How do we know that this process will ever terminate? In general, it won’t. However, it turns out
that for a random graph, not only will the process terminate, but it will do so very quickly: At each
stage, the number of parity checks that evaluates to one decreases by a constant factor! Therefore,
after O(log dc) steps, all the corruptions will be taken care of.

Lemma 5 (Sipser and Spielman). Fix any constants b and d and let α, β > 0 be sufficiently small
constants. For sufficiently large n, with probability at least 99% (over the choice of the random
parity check code), the following is true. Suppose you are given any word w with is at distance at
most αn from some codeword and this word causes p parity checks to evaluate to one. Then after
flipping those bits of w that participate in more than b/2 parity checks that evaluate to one, the
resulting codeword w′ is also at distance at most αn from the same codeword, and at most (1− β)p
of the parity checks of w′ evaluate to one.

We won’t prove this lemma, but you can try doing so at home. Its proof is more complicated than
the proof of Lemma 3, but is based on very similar ideas.
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Exercises

(a) Proof Lemma 3.

(b) Can you give a version of Theorem 4 that works even when c = αn, where α is some small
constant? The failure probability you obtain will not be O(1/nb−2) but it can be made as
small as, say, 1% when n is sufficiently large.

(c) Can you give an example of a (non-random) parity check code for which the decoding algo-
rithm from Section 5 never terminates?

(d) Can you prove Lemma 5? (Hints: First try proving that the number of incorrect parity
checks strictly decreases at every step, not necessarily by a factor of 1−β. As an intermediate
step, try to prove that the constraint graph has the following property with high probability:
For every set of vertices T at the bottom of size at most αn, among the neighbors of T at the
top, at least 3/4 have exactly one neighbor in S.)
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